Modules with invariant factors over commutative rings 变换环上具有不变因子的模
On idempotent and nilpotent matrices over commutative rings 关于交换环上的幂等阵与幂零阵
Representations of linear recurring arrays over commutative rings 交换环上线性递归阵列的代数表示
Maximal nilpotent subgroups of linear groups over finite commutative rings 有限交换环上线性群的极大幂零子群
Category of commutative rings 交换环的范畴
The aim of this paper is to given an explicit description of the derivations and automor phisms of a matrix algebra over a commutative ring with identity 摘要决定了含幺可换环上一类矩阵代数的所有导子和所有自同构。
Theorem 1 . 2 . 9 s is a direct product of a normal a - idempotent semiring and a commutative ring with an identity 1 , if and only if s is a strong right normal idempotent semiring of a - left rings Gs是正规人一幂等半环和含么交换环的直积,当且仅当s是a一左环的强右正规幂等半环
百科解释
In ring theory, a branch of abstract algebra, a commutative ring is a ring in which the multiplication operation is commutative. The study of commutative rings is called commutative algebra.